An assessment of detection canine alerts using flowers that release methyl benzoate, the cocaine odorant, and an evaluation of their behavior in terms of the VOCs produced.
In recent years, the high frequency of illicit substance abuse reported in the United States has made the development of efficient and rapid detection methods important. Biological detectors, such as canines (Canis familiaris), are valuable tools for rapid, on-site identification of illicit substances. However, research indicates that in many cases canines do not alert to the contraband, but rather to the volatile organic compounds (VOCs) that are released from the contraband, referred to as the ‘‘active odor.’’ In 2013, canine accuracy and reliability were challenged in the Supreme Court case, State of Florida v. Jardines. In this case, it was stated that if a canine alerts to the active odor, and not the contraband, the canine’s accuracy and selectivity could be questioned, since many of these compounds have been found in common household products. Specifically, methyl benzoate, the active odor of cocaine, has been found to be the most abundant compound produced by snapdragon flowers. Therefore, the purpose of this study is to evaluate the odor profiles of various species of snapdragon flowers to assess how significantly methyl benzoate contributes to the total VOC profile or fragrance that is produced. Particularly, this study examines the VOCs released from newly grown snapdragon flowers and determines its potential at eliciting a false alert from specially trained detection canines. The ability of detection canines to differentiate between cocaine and snapdragon flowers was determined in order to validate the field accuracy and discrimination power of these detectors. An optimized method using headspace solidphase microextraction coupled with gas chromatography–mass spectrometry (HS–SPME/GC–MS) was used to test the different types and abundances of compounds generated from snapdragon flowers at various stages throughout the plants’ life cycle. The results indicate that although methyl benzoate is present in the odor profile of snapdragon flowers, other compounds are present that contribute significantly, if not more, than that of methyl benzoate. Canine teams, from various police departments throughout South Florida, certified for narcotics detection, took part in this study. Two canine trials involving 21 canines teams were performed by exposing the teams to 4 different species of snapdragon flowers. Of the 21 canine teams tested, none alerted to the snapdragon flowers presented, while all (100%) alerted to real cocaine samples, the positive control. Notably, the results revealed that although methyl benzoate is produced by snapdragon flowers, certified narcotics detection canines can distinguish cocaine’s odor profile from that of snapdragon flowers.
This article reviews the use of dogs as chemical detectors, and the scientific foundation and available information on the reliability of explosive detector dogs, including a comparison with analytical instrumental techniques. Compositions of common military and industrial explosives are described, including relative vapor pressures of common explosives and constituent odor signature chemicals. Examples of active volatile odor signature chemicals from parent explosive chemicals are discussed as well as the need for additional studies. The specific example of odor chemicals from the high explosive composition C-4 studied by solid phase microextraction indicates that the volatile odor chemicals 2-ethyl-1-hexanol and cyclohexanone are available in the headspace; whereas, the active chemical cyclo-1,3,5-trimethylene-2,4,6-trinitramine (RDX) is not. A detailed comparison between instrumental detection methods and detector dogs shows aspects for which instrumental methods have advantages, a comparable number of aspects for which detector dogs have advantages, as well as additional aspects where there are no clear advantages. Overall, detector dogs still represent the fastest, most versatile, reliable real-time explosive detection device available. Instrumental methods, while they continue to improve, generally suffer from a lack of efficient sampling systems, selectivity problems in the presence of interfering odor chemicals and limited mobility/tracking ability.
Genuine explosive materials are traditionally employed in the training and testing of explosive-detecting canines so that they will respond reliably to these substances. However, challenges arising from the acquisition, storage, handling, and transportation of explosives have given rise to the development of “pseudo-explosive” training aids. These products attempt to emulate the odor of real explosives while remaining inert. Therefore, a canine trained on a pseudo explosive should respond to its real-life analog. Similarly, a canine trained on an actual explosive should respond to the pseudo-explosive as if it was real. This research tested those assumptions with a focus on three explosives: single-base smokeless powder, 2,4,6-trinitrotoluene (TNT), and a RDX based plastic explosive (Composition C-4). Using gas chromatography–mass spectrometry with solid phase microextraction as a pre-concentration technique, we determined that the volatile compounds given off by pseudo explosive products consisted of various solvents, known additives from explosive formulations, and common impurities present in authentic explosives. For example, simulated smokeless powders emitted terpenes, 2,4-dinitrotoluene, diphenylamine, and ethyl centralite. Simulated TNT products emitted 2,4- and 2,6-dinitrotoluene. Simulated C-4 products emitted cyclohexanone, 2-ethyl-1-hexanol, and dimethyldinitrobutane. We also conducted tests to determine whether canines trained on pseudo-explosives are capable of alerting to genuine explosives and vice versa. The results show that canines trained on pseudo-explosives performed poorly at detecting all but the pseudo-explosives they are trained on. Similarly, canines trained on actual explosives performed poorly at detecting all but the actual explosives on which they were trained.
Canine trainers may no longer need to handle or expose dogs to real
explosives and narcotics. The National Institute of Standards and Technology (NIST)
Canine training aids based on vapor capture-and-release into a flexible polymer, polydimethylsiloxane (PDMS), have been used for in canine detection of explosives that have volatile or semi-volatile odorants. To enhance the rate of odor capture for less volatile targets, two temperatures are used for aid preparation. By using an elevated temperature for the target explosive, the amount of vapor is enhanced, increasing the production of the characteristic odor profile. The polymeric adsorbent is maintained at a cool temperature, favoring vapor capture. The success of this two-temperature approach is demonstrated for training aids targeting the low volatility explosive TNT using SPME (solid-phase microextraction) headspace analysis. In addition, the effect of using two temperatures on preparing training aids based on TNT and its more volatile impurities 2,4-DNT and 2,6-DNT are evaluated in canine trials. A thermal pretreatment to minimize the non-target odors in the PDMS polymer is presented.
There is a consensus that humans, rodents, and primates process odor mixtures configurally: that is, the mixture is perceived as a unique whole and not as a collection of its different components. However, it is commonly believed by dog trainers that dogs can analyze mixtures and break them down into their individual components: that is, that they process odor mixtures analytically. There is, however, little experimental evidence to support this belief. This experiment was designed to determine whether dogs trained on mixtures of three or five different odors would detect the individual odors when each component was tested. Our results show that the dogs were able to respond to each of the components on their first trial with each separate element of the mixture (p < 0.001). This finding presents the first experimental proof that dogs trained to detect a mixture will later detect its individual components. These results may be attributed to previous extensive general training of the tested dogs to detect odors, and to their being reared and maintained in an enriched olfactory environment.
The pong from handling iron or copper comes from your own skin. Nature International weekly journal of science.
Humans are perplexed by the metallic odor from touching iron metal objects, such as tools, cutlery, railings, door handles, firearms, jewelry, and coins. Phosphorus-containing iron which is under acid attack gives rise to a different “carbide” or “garlic” odor which metallurgists have attributed to the gas phosphine (PH3);[1–3] however, we found that purified PH3 at breathable dilution has hardly any odor. The aim of our research is to understand the chemical causes of these two iron smells in our engineered metal environment.
HPDogs-Solutions - Consultoria e Treinamento
Copyright © 2021 High Performance Dogs – Todos os direitos reservados.
Desenvolvido por Montanha_Bio